Extensions 1→N→G→Q→1 with N=C32 and Q=C3⋊D4

Direct product G=N×Q with N=C32 and Q=C3⋊D4
dρLabelID
C32×C3⋊D436C3^2xC3:D4216,139

Semidirect products G=N:Q with N=C32 and Q=C3⋊D4
extensionφ:Q→Aut NdρLabelID
C321(C3⋊D4) = He32D4φ: C3⋊D4/C2D6 ⊆ Aut C32366+C3^2:1(C3:D4)216,35
C322(C3⋊D4) = He33D4φ: C3⋊D4/C2D6 ⊆ Aut C32366C3^2:2(C3:D4)216,37
C323(C3⋊D4) = C33⋊D4φ: C3⋊D4/C3D4 ⊆ Aut C32124C3^2:3(C3:D4)216,158
C324(C3⋊D4) = He36D4φ: C3⋊D4/C22S3 ⊆ Aut C32366C3^2:4(C3:D4)216,60
C325(C3⋊D4) = He37D4φ: C3⋊D4/C22S3 ⊆ Aut C32366C3^2:5(C3:D4)216,72
C326(C3⋊D4) = C336D4φ: C3⋊D4/C6C22 ⊆ Aut C3272C3^2:6(C3:D4)216,127
C327(C3⋊D4) = C337D4φ: C3⋊D4/C6C22 ⊆ Aut C3236C3^2:7(C3:D4)216,128
C328(C3⋊D4) = C339D4φ: C3⋊D4/C6C22 ⊆ Aut C32244C3^2:8(C3:D4)216,132
C329(C3⋊D4) = C3×C3⋊D12φ: C3⋊D4/Dic3C2 ⊆ Aut C32244C3^2:9(C3:D4)216,122
C3210(C3⋊D4) = C338D4φ: C3⋊D4/Dic3C2 ⊆ Aut C3236C3^2:10(C3:D4)216,129
C3211(C3⋊D4) = C3×D6⋊S3φ: C3⋊D4/D6C2 ⊆ Aut C32244C3^2:11(C3:D4)216,121
C3212(C3⋊D4) = C3×C327D4φ: C3⋊D4/C2×C6C2 ⊆ Aut C3236C3^2:12(C3:D4)216,144
C3213(C3⋊D4) = C3315D4φ: C3⋊D4/C2×C6C2 ⊆ Aut C32108C3^2:13(C3:D4)216,149

Non-split extensions G=N.Q with N=C32 and Q=C3⋊D4
extensionφ:Q→Aut NdρLabelID
C32.(C3⋊D4) = Dic9⋊C6φ: C3⋊D4/C22S3 ⊆ Aut C32366C3^2.(C3:D4)216,62
C32.2(C3⋊D4) = D6⋊D9φ: C3⋊D4/C6C22 ⊆ Aut C32724-C3^2.2(C3:D4)216,31
C32.3(C3⋊D4) = C9⋊D12φ: C3⋊D4/C6C22 ⊆ Aut C32364+C3^2.3(C3:D4)216,32
C32.4(C3⋊D4) = C3×C9⋊D4φ: C3⋊D4/C2×C6C2 ⊆ Aut C32362C3^2.4(C3:D4)216,57
C32.5(C3⋊D4) = C6.D18φ: C3⋊D4/C2×C6C2 ⊆ Aut C32108C3^2.5(C3:D4)216,70

׿
×
𝔽