Extensions 1→N→G→Q→1 with N=C32 and Q=C3:D4

Direct product G=NxQ with N=C32 and Q=C3:D4
dρLabelID
C32xC3:D436C3^2xC3:D4216,139

Semidirect products G=N:Q with N=C32 and Q=C3:D4
extensionφ:Q→Aut NdρLabelID
C32:1(C3:D4) = He3:2D4φ: C3:D4/C2D6 ⊆ Aut C32366+C3^2:1(C3:D4)216,35
C32:2(C3:D4) = He3:3D4φ: C3:D4/C2D6 ⊆ Aut C32366C3^2:2(C3:D4)216,37
C32:3(C3:D4) = C33:D4φ: C3:D4/C3D4 ⊆ Aut C32124C3^2:3(C3:D4)216,158
C32:4(C3:D4) = He3:6D4φ: C3:D4/C22S3 ⊆ Aut C32366C3^2:4(C3:D4)216,60
C32:5(C3:D4) = He3:7D4φ: C3:D4/C22S3 ⊆ Aut C32366C3^2:5(C3:D4)216,72
C32:6(C3:D4) = C33:6D4φ: C3:D4/C6C22 ⊆ Aut C3272C3^2:6(C3:D4)216,127
C32:7(C3:D4) = C33:7D4φ: C3:D4/C6C22 ⊆ Aut C3236C3^2:7(C3:D4)216,128
C32:8(C3:D4) = C33:9D4φ: C3:D4/C6C22 ⊆ Aut C32244C3^2:8(C3:D4)216,132
C32:9(C3:D4) = C3xC3:D12φ: C3:D4/Dic3C2 ⊆ Aut C32244C3^2:9(C3:D4)216,122
C32:10(C3:D4) = C33:8D4φ: C3:D4/Dic3C2 ⊆ Aut C3236C3^2:10(C3:D4)216,129
C32:11(C3:D4) = C3xD6:S3φ: C3:D4/D6C2 ⊆ Aut C32244C3^2:11(C3:D4)216,121
C32:12(C3:D4) = C3xC32:7D4φ: C3:D4/C2xC6C2 ⊆ Aut C3236C3^2:12(C3:D4)216,144
C32:13(C3:D4) = C33:15D4φ: C3:D4/C2xC6C2 ⊆ Aut C32108C3^2:13(C3:D4)216,149

Non-split extensions G=N.Q with N=C32 and Q=C3:D4
extensionφ:Q→Aut NdρLabelID
C32.(C3:D4) = Dic9:C6φ: C3:D4/C22S3 ⊆ Aut C32366C3^2.(C3:D4)216,62
C32.2(C3:D4) = D6:D9φ: C3:D4/C6C22 ⊆ Aut C32724-C3^2.2(C3:D4)216,31
C32.3(C3:D4) = C9:D12φ: C3:D4/C6C22 ⊆ Aut C32364+C3^2.3(C3:D4)216,32
C32.4(C3:D4) = C3xC9:D4φ: C3:D4/C2xC6C2 ⊆ Aut C32362C3^2.4(C3:D4)216,57
C32.5(C3:D4) = C6.D18φ: C3:D4/C2xC6C2 ⊆ Aut C32108C3^2.5(C3:D4)216,70

׿
x
:
Z
F
o
wr
Q
<